首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138937篇
  免费   5106篇
  国内免费   16427篇
  2022年   1136篇
  2021年   1762篇
  2020年   1934篇
  2019年   3763篇
  2018年   3062篇
  2017年   2235篇
  2016年   2708篇
  2015年   4002篇
  2014年   5403篇
  2013年   7712篇
  2012年   5070篇
  2011年   5899篇
  2010年   4393篇
  2009年   4975篇
  2008年   5432篇
  2007年   6265篇
  2006年   6152篇
  2005年   5740篇
  2004年   5445篇
  2003年   4837篇
  2002年   4512篇
  2001年   3855篇
  2000年   3103篇
  1999年   3316篇
  1998年   2930篇
  1997年   2364篇
  1996年   2217篇
  1995年   2493篇
  1994年   2529篇
  1993年   2306篇
  1992年   2159篇
  1991年   1983篇
  1990年   1728篇
  1989年   1526篇
  1988年   1550篇
  1987年   1302篇
  1986年   1006篇
  1985年   2848篇
  1984年   4148篇
  1983年   2791篇
  1982年   3514篇
  1981年   2822篇
  1980年   2695篇
  1979年   2471篇
  1978年   1994篇
  1977年   1764篇
  1976年   1594篇
  1975年   1304篇
  1974年   1266篇
  1973年   1244篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
 Analyses of ITS sequences for 49 species of Olearia, including representatives from all currently recognised intergeneric sections, and 43 species from 23 other genera of Astereae, rooted on eight sequences from Anthemideae, provide no support for the monophyly of this large and morphologically diverse Australasian genus. Eighteen separate lineages of Olearia are recognised, including seven robust groups. Three of these groups and another eight species are placed within a primary clade incorporating representatives of Achnophora, Aster, Brachyscome, Calotis, Camptacra, Erigeron, Felicia, Grangea, Kippistia, Lagenifera, Minuria, Oritrophium, Peripleura, Podocoma, Remya, Solidago, Tetramolopium and Vittadinia. The remaining four groups and three individual species lie within a sister clade that also includes Celmisia, Chiliotrichum, Damnamenia, Pleurophyllum and Pachystegia. Relationships within each primary clade are poorly resolved. There is some congruence between this molecular estimate of the phylogeny and the distribution of types of abaxial leaf-hair, which is the basis of the present sectional classification of Olearia, but all states appear to have arisen more than once within the tribe. It is concluded that those species placed within the second primary clade should be removed from the genus, but the extent to which species placed within the first primary clade constitute a monophyletic group can only be resolved with further sequence data. Received November 12, 2001; accepted April 29, 2002 Published online: November 22, 2002 Addresses of authors: Edward W. Cross, Centre for Plant Biodiversity Research, CSIRO, GPO Box 1600, Canberra, ACT 2601, Australia (E-mail: ed.cross@csiro.au); Christopher J . Quinn, Royal Botanic Gardens, Mrs Macquaries Rd., Sydney, NSW 2000, Australia; Steven J. Wagstaff, Landcare Research, PO Box 69, Lincoln 8152, New Zealand.  相似文献   
992.
The Tardigrada is a cosmopolitan phylum of pre-Pangaean origin, yet tardigrade families and genera show distinct biogeographic components isolated by two major geological events. Separate Laurasian and Gondwanan familial clusters correlate with the Triassic disintegration of Pangaea, while discrete Antarctic, Australian and New Zealand familial/generic clusters relate to the subsequent Jurassic/Cretaceous disintegration of Gondwana.  相似文献   
993.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   
994.
The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis.  相似文献   
995.
996.
997.
998.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
999.
1000.
Abstract Larvae of the tobacco hornworm moth Manduca sexta starved for the first 3 days of the last (fifth) stadium undergo a supernumerary moult. If they are provided with sucrose during the starvation period, they develop into normal pupae although pupation is delayed. The activities of the corpora allata (CA) from normal, starved, and sucrose fed larvae were followed through the fifth stadium with a radiochemical assay for Juvenile Hormone (JH) biosynthesis. An attempt was made to correlate CA-activity with CA cell number, size, and protein content.
In CA of normally fed larvae the rate of JH synthesis declined to undetectable levels by day 4 which was also the time of exposure of the dorsal vessel. In CA of starved larvae, the rate of JH synthesis at first decreased but began to increase on day 3 and reached a peak value by day 7 , at which time head capsule slippage occurred. In CA of sucrose fed larvae, the rate of biosynthesis declined as in normal larvae but the decline was extended over a longer period. Exposure of the dorsal vessel was delayed in the same manner and occurred on days 7–9. The major JH in all cases was JH-II.
The CA comprise c. 150 cells in the early fifth stadium, and this number remained constant during the fifth stadium in all three feeding regimens. In normal larvae, CA size and protein content increased several-fold during the stadium whereas in starved and sucrose-fed larvae they increased slowly and in agreement with the altered timing of developmental events. In none of the groups was the CA activity pattern correlated with morphometric changes of the CA. The rates of JH biosynthesis were not closely correlated with published JH titre curves. The in vivo mechanisms for regulation of JH production remain to be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号